人工智能需要什么基礎(chǔ)要數(shù)學(xué)基礎(chǔ):高等數(shù)學(xué),線性代數(shù),概率論數(shù)理統(tǒng)計和隨機過程,離散數(shù)學(xué),數(shù)值分析。數(shù)學(xué)基礎(chǔ)知識蘊含著處理智能問題的基本思想與方法,也是理解復(fù)雜算法的必備要素。今天的種種人工智能技術(shù)歸根到底都建立在數(shù)學(xué)模型之上,要了解人工智能,首先要掌握必備的數(shù)學(xué)基礎(chǔ)知識。線性代數(shù)將研究對象形式化,概率論描述統(tǒng)計規(guī)律。需要算法的積累:人工神經(jīng)網(wǎng)絡(luò),支持向量機,遺傳算法等等算法;當(dāng)然還有各個領(lǐng)域需要的算法,比如要讓機器人自己在位置環(huán)境導(dǎo)航和建圖就需要研究SLAM;總之算法很多需要時間的積累。需要掌握至少一...
更新時間:2023-06-20標(biāo)簽: 人工人工智能人工智能技術(shù)智能人工智能技術(shù)的基礎(chǔ)設(shè)施 全文閱讀