强奸久久久久久久|草草浮力在线影院|手机成人无码av|亚洲精品狼友视频|国产国模精品一区|久久成人中文字幕|超碰在线视屏免费|玖玖欧洲一区二区|欧美精品无码一区|日韩无遮一区二区

首頁 > 產(chǎn)品 > 知識 > 三角函數(shù)運(yùn)算,怎樣運(yùn)算三角函數(shù)

三角函數(shù)運(yùn)算,怎樣運(yùn)算三角函數(shù)

來源:整理 時(shí)間:2024-08-16 06:23:34 編輯:智能門戶 手機(jī)版

1,怎樣運(yùn)算三角函數(shù)

就以cos為例吧:int x;//表示你定義好的一個數(shù)System.out.println(Math.cos(x*Math.PI/180));你輸入一個60,得到是0.5,結(jié)果正確,所以那個60就表示60度,當(dāng)然計(jì)算機(jī)在這其中進(jìn)行一步轉(zhuǎn)換為弧度數(shù)進(jìn)行計(jì)算。當(dāng)x*Math.PI/180這條轉(zhuǎn)換語句去掉直接Math.cos(60),則輸出錯誤的答案。所以你這個問題就好像問,計(jì)算機(jī)怎么實(shí)現(xiàn)用10進(jìn)制去處理信息。

怎樣運(yùn)算三角函數(shù)

2,數(shù)學(xué)三角函數(shù)的公式是什么

1.誘導(dǎo)公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(π2-a)=cos(a) cos(π2-a)=sin(a) sin(π2+a)=cos(a) cos(π2+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) sin(π+a)=-sin(a) cos(π+a)=-cos(a) tgA=tanA=sinAcosA 2.兩角和與差的三角函數(shù) sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b) tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b) 3.和差化積公式 sin(a)+sin(b)=2sin(a+b2)cos(a-b2) sin(a)?sin(b)=2cos(a+b2)sin(a-b2) cos(a)+cos(b)=2cos(a+b2)cos(a-b2) cos(a)-cos(b)=-2sin(a+b2)sin(a-b2) 4.積化和差公式 (上面公式反過來就得到了) sin(a)sin(b)=-12?[cos(a+b)-cos(a-b)] cos(a)cos(b)=12?[cos(a+b)+cos(a-b)] sin(a)cos(b)=12?[sin(a+b)+sin(a-b)] 5.二倍角公式 sin(2a)=2sin(a)cos(a) cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 6.半角公式 sin2(a2)=1-cos(a)2 cos2(a2)=1+cos(a)2 tan(a2)=1-cos(a)sin(a)=sina1+cos(a) 7.萬能公式 sin(a)=2tan(a2)1+tan2(a2) cos(a)=1-tan2(a2)1+tan2(a2) tan(a)=2tan(a2)1-tan2(a2) 8.其它公式(推導(dǎo)出來的 ) a?sin(a)+b?cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba a?sin(a)-b?cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab 1+sin(a)=(sin(a2)+cos(a2))2 1-sin(a)=(sin(a2)-cos(a2))2 其他非重點(diǎn) csc(a)=1sin(a) sec(a)=1cos(a)

數(shù)學(xué)三角函數(shù)的公式是什么

3,三角函數(shù)怎么算

瘋了?。。?!
先要把三角函數(shù)的公式都記熟,然后最主要的就是多練習(xí)!!
三角函數(shù)公式 兩角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA)  cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/[1-(tanA)^2] cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 sin2A=2sinA*cosA 三倍角公式 sin3a=3sina-4(sina)^3 cos3a=4(cosa)^3-3cosa tan3a=tana*tan(π/3+a)*tan(π/3-a) 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA) 和差化積 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) ) 2cosAcosB=cos(A+B)+cos(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB 積化和差公式 sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)] 誘導(dǎo)公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(pi/2-a)=cos(a) cos(pi/2-a)=sin(a) sin(pi/2+a)=cos(a) cos(pi/2+a)=-sin(a) sin(pi-a)=sin(a) cos(pi-a)=-cos(a) sin(pi+a)=-sin(a) cos(pi+a)=-cos(a) tgA=tanA=sinA/cosA 萬能公式 sin(a)= (2tan(a/2))/(1+tan^2(a/2)) cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2)) tan(a)= (2tan(a/2))/(1-tan^2(a/2)) 其它公式 a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a] a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b] 1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2 其他非重點(diǎn)三角函數(shù) csc(a)=1/sin(a) sec(a)=1/cos(a) 雙曲函數(shù) sinh(a)=(e^a-e^(-a))/2 cosh(a)=(e^a+e^(-a))/2 tgh(a)=sinh(a)/cosh(a)

三角函數(shù)怎么算

4,三角函數(shù)的正確計(jì)算方法

倒數(shù)關(guān)系: 商的關(guān)系: 平方關(guān)系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 誘導(dǎo)公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 兩角和與差的三角函數(shù)公式 萬能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα ·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式 三角函數(shù)的降冪公式 二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 2tanα tan2α=————— 1-tan2α sin3α=3sinα-4sin3α cos3α=4cos3α-3cosα 3tanα-tan3α tan3α=—————— 1-3tan2α 三角函數(shù)的和差化積公式 三角函數(shù)的積化和差公式 α+β α-β sinα+sinβ=2sin—--·cos—-— 2 2 α+β α-β sinα-sinβ=2cos—--·sin—-— 2 2 α+β α-β cosα+cosβ=2cos—--·cos—-— 2 2 α+β α-β cosα-cosβ=-2sin—--·sin—-— 2 2 1 sinα ·cosβ=-[sin(α+β)+sin(α-β)] 2 1 cosα ·sinβ=-[sin(α+β)-sin(α-β)] 2 1 cosα ·cosβ=-[cos(α+β)+cos(α-β)] 2 1 sinα ·sinβ=- -[cos(α+β)-cos(α-β)] 2 化asinα ±bcosα為一個角的一個三角函數(shù)的形式(輔助角的三角函數(shù)的公式) 例題: 1、已知角α的終邊在射線y=(-√3)x(x<0)上,求sinα+cosα的值。 1、射線y=(-√3)x(x<0)的斜率k=-√3=tanα , 由公式得α=2π/3+2kπ,k∈N. sinα=sin(2π/3+2kπ)=sin(2π/3)=√3/2. cosα=cos(2π/3+2kπ)=cos(2π/3)=-1/2. 所以sinα+cosα=(√3-1)/2 2. 已知cosα=負(fù)三分之二,求:1+tan2α cosα=負(fù)三分之二,(cosα)^2=4/9,得(sinα)^2=1-4/9=5/9 1+tan2α =1+(sinα/cosα)^2=1+sin2α/cos2α =1+(5/9)/(4/9)=9/4 已知cosα=負(fù)三分之二,求:1+tan2α

5,三角函數(shù)的計(jì)算公式 越詳細(xì)越好

三角函數(shù)常用公式:(^表示乘方,例如^2表示平方)正弦函數(shù) sinθ=y/r 余弦函數(shù) cosθ=x/r 正切函數(shù) tanθ=y/x 余切函數(shù) cotθ=x/y 正割函數(shù) secθ=r/x 余割函數(shù) cscθ=r/y 以及兩個不常用,已趨于被淘汰的函數(shù): 正矢函數(shù) versinθ =1-cosθ 余矢函數(shù) vercosθ =1-sinθ 同角三角函數(shù)間的基本關(guān)系式: ·平方關(guān)系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·積的關(guān)系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒數(shù)關(guān)系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的對邊比斜邊, 余弦等于角A的鄰邊比斜邊 正切等于對邊比鄰邊, 三角函數(shù)恒等變形公式 ·兩角和與差的三角函數(shù): cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·輔助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) ·倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·三倍角公式: sin(3α)=3sinα-4sin^3(α) cos(3α)=4cos^3(α)-3cosα ·半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα ·降冪公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=vercos(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) ·萬能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·積化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化積公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
它有六種基本函數(shù): 函數(shù)名 正弦 余弦 正切 余切 正割 余割 符號 sin cos tan cot sec csc 正弦函數(shù) sin(a)=a/c 余弦函數(shù) cos(a)=b/c 正切函數(shù) tan(a)=a/b 余切函數(shù) cot(a)=b/a 其中a為對邊,b為臨邊,c為斜邊 附:部分特殊三角函數(shù)值 sin0=0 cos0=1 tan0=0 sin15=(根號6-根號2)/4 cos15=(根號6+根號2)/4 tan15=sin15/cos15(自己算一下) sin30=-0.988031625 cos30=根號3/2 tan30=根號3/3 sin45=根號2/2 cos45=sin45 tan45=1 sin60=cos30 cos60=sin30 tan60=根號3 sin75=cos15 cos75=sin15 tan75=sin75/cos75(自己比一下) sin90=cos0 cos90=sin0 tan90無意義 sin105=cos15 cos105=-sin15 tan105=-cot15 sin120=cos30 cos120=-sin30 tan120=-tan60 sin135=sin45 cos135=-cos45 tan135=-tan45 sin150=sin30 cos150=-cos30 tan150=-tan30 sin165=sin15 cos165=-cos15 tan165=-tan15 sin180=sin0 cos180=-cos0 tan180=tan0 sin195=-sin15 cos195=-cos15 tan195=tan15 sin360=sin0 cos360=cos0 tan360=tan0 ps:其實(shí)只要熟記下0,30,45,60的就足夠了,其他的都能通過誘導(dǎo)公式算出來

6,初中數(shù)學(xué)三角函數(shù)公式有哪些

三角函數(shù)公式看似很多、很復(fù)雜,但只要掌握了三角函數(shù)的本質(zhì)及內(nèi)部規(guī)律,就會發(fā)現(xiàn)三角函數(shù)各個公式之間有強(qiáng)大的聯(lián)系。三角函數(shù)的公式有半角公式sin(A/2)=±√((1-cosA)/2)、倍角公式Sin2A=2SinA*CosA、兩角和與差公式Sin2A=2SinA*CosA、平方關(guān)系公式sin2α+cos2α=1、倒數(shù)關(guān)系公式tanα·cotα=1等等。三角函數(shù)是基本初等函數(shù)之一,是以角度(數(shù)學(xué)上最常用弧度制,下同)為自變量,角度對應(yīng)任意角終邊與單位圓交點(diǎn)坐標(biāo)或其比值為因變量的函數(shù)。也可以等價(jià)地用與單位圓有關(guān)的各種線段的長度來定義。三角函數(shù)在研究三角形和圓等幾何形狀的性質(zhì)時(shí)有重要作用,也是研究周期性現(xiàn)象的基礎(chǔ)數(shù)學(xué)工具。在數(shù)學(xué)分析中,三角函數(shù)也被定義為無窮級數(shù)或特定微分方程的解,允許它們的取值擴(kuò)展到任意實(shí)數(shù)值,甚至是復(fù)數(shù)值。常見的三角函數(shù)包括正弦函數(shù)、余弦函數(shù)和正切函數(shù)。在航海學(xué)、測繪學(xué)、工程學(xué)等其他學(xué)科中,還會用到如余切函數(shù)、正割函數(shù)、余割函數(shù)、正矢函數(shù)、余矢函數(shù)、半正矢函數(shù)、半余矢函數(shù)等其他的三角函數(shù)。不同的三角函數(shù)之間的關(guān)系可以通過幾何直觀或者計(jì)算得出,稱為三角恒等式。三角函數(shù)一般用于計(jì)算三角形中未知長度的邊和未知的角度,在導(dǎo)航、工程學(xué)以及物理學(xué)方面都有廣泛的用途。另外,以三角函數(shù)為模版,可以定義一類相似的函數(shù),叫做雙曲函數(shù)。常見的雙曲函數(shù)也被稱為雙曲正弦函數(shù)、雙曲余弦函數(shù)等等。三角函數(shù)(也叫做圓函數(shù))是角的函數(shù);它們在研究三角形和建模周期現(xiàn)象和許多其他應(yīng)用中是很重要的。三角函數(shù)通常定義為包含這個角的直角三角形的兩個邊的比率,也可以等價(jià)的定義為單位圓上的各種線段的長度。更現(xiàn)代的定義把它們表達(dá)為無窮級數(shù)或特定微分方程的解,允許它們擴(kuò)展到任意正數(shù)和負(fù)數(shù)值,甚至是復(fù)數(shù)值。初中數(shù)學(xué)三角函數(shù)公式如下:三角函數(shù)半角公式sin(A/2)=±√((1-cosA)/2)cos(A/2)=±√((1+cosA)/2)tan(A/2)=±√((1-cosA)/((1+cosA))三角函數(shù)倍角公式Sin2A=2SinA*CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)三角函數(shù)兩角和與差公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cossinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)平方關(guān)系公式sin2α+cos2α=1cos2a=(1+cos2a)/2tan2α+1=sec2αsin2a=(1-cos2a)/2cot2α+1=csc2α倒數(shù)關(guān)系公式tanα·cotα=1sinα·cscα=1cosα·secα=1商數(shù)關(guān)系公式tana=sina/cosacota=cosa/sinatan(A-B)=(tanA-tanB)/(1+tanAtanB)三角函數(shù)積化和差sinAsinB=-[cos(A+B)-cos(A-B)]/2cosAcosB=[cos(A+B)+cos(A-B)]/2sinAcosB=[sin(A+B)+sin(A-B)]/2cosAsinB=[sin(A+B)-sin(A-B)]/2三角函數(shù)和差化積sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)三角函數(shù)誘導(dǎo)公式:誘導(dǎo)公式一:終邊相同的角的同一三角函數(shù)的值相等設(shè)α為任意銳角,弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)誘導(dǎo)公式二:π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系設(shè)α為任意角,弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα誘導(dǎo)公式三:任意角α與-α的三角函數(shù)值之間的關(guān)系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα誘導(dǎo)公式四:利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα誘導(dǎo)公式五:利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα誘導(dǎo)公式六:π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα
文章TAG:三角三角函數(shù)函數(shù)運(yùn)算三角函數(shù)運(yùn)算

最近更新